L-Arginine-Dependent Nitric Oxide Production in the Blood of Patients with Type 2 Diabetes: A Pilot, Five-Year Prospective Study

Author:

Stoian Irina12ORCID,Iosif Liviu12ORCID,Gilca Marilena1ORCID,Vlad Adelina3ORCID,Tivig Ioan24,Bradescu Ovidiu Marius5,Savu Octavian56

Affiliation:

1. Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania

2. IristLabmed SRL, 031235 Bucharest, Romania

3. Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania

4. Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania

5. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania

6. Department of Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania

Abstract

Backgound: Type 2 diabetes mellitus (T2DM) is a major cardiovascular risk factor. Nitric oxide (NO) is one of the many molecules that regulate vascular tone, and red blood cells (RBCs) are known to play an important role in adjusting cardiac function through NO export from RBCs. Our study prospectively investigated the L-arginine (L-arg)–nitric oxide (NO) metabolic pathway in the erythrocytes and plasma of subjects with T2DM. Methods: RBCs and plasma were collected from patients with T2DM (n = 10), at first clinical onset (baseline) and after five years of disease evolution (follow-up). L-arg content was assayed by competitive enzyme-linked immunoassay. Arginase activity and nitrate/nitrite levels were measured using spectrophotometry. Results: When compared to baseline, L-arg content decreased in RBCs and remained similar in the plasma; NO production decreased in RBCs and the plasma; and arginase activity was lower in RBCs and increased in plasma. Conclusions: The L-arg/NO metabolic pathway decreases in the RBCs of patients with T2DM five years after the first clinical onset. The persistent decrease in RBCs’ arginase activity fails to compensate for the sustained decrease in RBCs’ NO production in the diabetic environment. This pilot study indicates that the NO-RBC pool is depleted during the progression of the disease in the same cohort of T2DM patients.

Funder

European Social Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3