Abstract
In this paper, the k-ω SST (Shear Stress Transport) turbulence model is employed to study the effect of flow rate on regular patterns of pressure load distribution characteristics on the helico-axial pump impeller blade surface. The results show that all the curves of pressure load distribution of helico-axial pump impeller blade surface at different blade heights under different flow rates show a similar trend of increasing first and decreasing then. At the impeller blade inlet area, with the increase of flow rate, the range of negative blade pressure load in this area gradually increases. When the pump runs under small flow rate conditions, within the range of relative position from 0 to 0.2 of the hub, the work capacity of the hub is obviously stronger than that of other areas of the impeller, while within the range of relative position from 0.2 to 1, the work capacity from hub to rim gradually enhances. With the increase in flow rate, the area with a strong work capacity of the hub gradually expands while the area with a strong work capacity of the rim gradually narrows. The research results can provide a theoretical reference for the optimization design of pump supercharging performance.
Funder
Central Leading Place Scientific and Technological Development Funds
Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering
The National Key Research and Development Program
The Key scientific research fund of Xihua University of China
The Open Research Subject of Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献