Numerical Generation of Solitary Wave and Its Propagation Characteristics in a Step-Type Flume

Author:

Song XueminORCID,Yao Jianxi,Liu Weiqin,Shu Yaqing,Xu Feng

Abstract

This work concerns the numerical generation of stable solitary waves by using a piston-type wave maker and the propagation characteristics of a solitary wave in a step-type flume. The numerical generation of solitary waves was performed by solving N-S (Navier–Stokes) equations on the open source CFD (computational fluid dynamics) platform OpenFOAM. To this end, a new module of dynamic boundary conditions was programmed and can be applied to prescribe the horizontal linear motion of a paddle. Two kinds of paddle motions, based on both the first-order and ninth-order solutions of solitary waves, were first determined. The time history of paddle motion was restored in a file, which was then used as an input for the virtual wave maker. The solitary wave in water with a constant depth was generated by both numerical simulation and experiment in the wave flume installed with a piston wave maker. The results show that the amplitudes of trailing waves based on the first-order solution are larger than those based on the ninth-order solution and that wave height based on the first-order solution decays more quickly. The numerical wave profiles are in good agreement with the experimental ones. The propagation characteristics of a solitary wave in a step-type flume was numerically investigated as well. It was found that a part of the solitary wave is reflected when the solitary wave passes the step due to blockage effects, and the forward main wave collapses quickly when it enters shallow water. This work presents a very successful numerical study of stable solitary wave generation and reveals the phenomena when a solitary wave propagates in a step-type flume.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference20 articles.

1. Numerical investigation of transient harbor oscillations induced by N-waves;Gao;Coast. Eng.,2017

2. On hydrodynamic characteristics of transient harbor resonance excited by double solitary waves;Gao;Ocean Eng.,2021

3. Theorie de L’intumescence Liguide Appelee onde Solitaire ou de Translation se Propageant dans un Canal Rectangulaire. Conference Comptes rendus hebdomadaires des séances de L’Académie des Sciences, Paris;Boussinesq;CR Acad. Sci.,1871

4. On waves;Rayleigh;Philos. Mag.,1876

5. The solitary wave in water of variable depth. Part 2;Grimshaw;J. Fluid Mech.,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3