Research on Fault Early Warning of Marine Diesel Engine Based on CNN-BiGRU

Author:

Liu Ben,Gan HuibingORCID,Chen Dong,Shu Zepeng

Abstract

The normal operation of the marine diesel engine is of great significance to ensure the normal navigation of the ship. Predicting its operation state and judging whether the diesel engine is in the abnormal state in advance can guarantee the safe navigation of the vessel. In this paper, combining the feature extraction ability of the convolutional neural network (CNN) and the time series data prediction ability of the bidirectional gated recurrent unit (BiGRU), a marine diesel engine exhaust temperature prediction model is constructed. The results show that the mean square error (MSE) of the prediction model is 0.1156, the average absolute error (MAE) is 0.2501, and the average absolute percentage error (MAPE) is 0.0005336. Then, according to the residual distribution between the predicted value and the actual value of the model output and the standard deviation of the residual calculated by using the sliding window, we set the alarm threshold, where the upper limit of residual error is 1 and the lower limit is 1. The upper limit of the standard deviation is 0.604. Finally, we used the data set under abnormal conditions for experimental verification. The results show that the method can accurately determine the fault early warning of the marine diesel engine and provides a new reference for the health management of intelligent marine equipment.

Funder

The National Natural Science Foun-dation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Priori-distribution-guided adaptive sparse attention for cross-domain feature mining in diesel engine fault diagnosis;Engineering Applications of Artificial Intelligence;2024-06

2. A Deep Learning-Based Fault Warning Model for Exhaust Temperature Prediction and Fault Warning of Marine Diesel Engine;Journal of Marine Science and Engineering;2023-07-29

3. A Deep Learning-Based Vector Autoregressive-Gated Recurrent Unit Hybrid Model for Long-Term Forecasting of Weather Parameters for Smart Farms;Artificial Intelligence Tools and Technologies for Smart Farming and Agriculture Practices;2023-06-30

4. Research on Power Plant Equipment Failure Early Warning Technology Based on Data-Driven and Deep Learning;2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE);2023-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3