Impact of Salinity Changes on the Antioxidation of Juvenile Yellowfin Tuna (Thunnus albacares)

Author:

Zhou Shengjie,Zhang Ninglu,Fu Zhengyi,Yu Gang,Ma ZhenhuaORCID,Zhao Lei

Abstract

To understand the impacts of salinity stress on the antioxidation of yellowfin tuna Thunnus albacares, 72 fishes (646.52 ± 66.32 g) were randomly divided into two treatments (32‰ and 29‰) and sampled at four time points (0 h, 12 h, 24 h, and 48 h). The salinity of the control group (32‰) was based on natural filtered seawater and the salinity of the stress group (29‰) was reduced by adding tap water with 24 h aeration to the natural filtered seawater. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) from liver, gill, and muscle tissues were used as the antioxidant indexes in this study. The results showed that the changes of SOD and GSH-Px in the gills were first not significantly different from the control group (p > 0.05) and finally significantly higher than the control group (SOD: 50.57%, GSH-Px: 195.95%, p < 0.05). SOD activity in fish liver was not significantly changed from 0 h to 48 h (p > 0.05), and was not significantly different between the stress group and control group (p > 0.05). With the increase in stress time, GSH-Px and MDA activities in the liver of juvenile yellowfin tuna increased first (GSH-Px: 113.42%, MDA: 137.45%) and then reduced (GSH-Px: −62.37%, MDA: −16.90%) to levels similar to the control group. The SOD activity in the white and red muscle of juvenile yellowfin tuna first decreased (white muscle: −27.51%, red muscle: −15.52%) and then increased (white muscle: 7.30%, red muscle: 3.70%) to the level of the control group. The activities of GSH-Px and MDA in white and red muscle increased first (white muscle GSH-Px: 81.96%, red muscle GSH-Px: 233.08%, white muscle MDA: 26.89%, red muscle MDA: 64.68%) and then decreased (white muscle GSH-Px: −48.03%, red muscle GSH-Px: −28.94%, white muscle MDA: −15.93%, red muscle MDA: −28.67%) to the level observed in the control group. The results from the present study indicate that low salinity may lead to changes in the antioxidant function of yellowfin tuna juveniles. In contrast, yellowfin tuna juveniles have strong adaptability to the salinity of 29‰. However, excessive stress may consume the body’s reserves and reduce the body’s resistance.

Funder

Hainan Major Science and Technology Project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference47 articles.

1. Bisby, F., Roskov, Y., Culham, A., Orrell, T., Nicolson, D., Paglinawan, L., Bailly, N., Appeltans, W., Kirk, P., and Bourgoin, T. (2012). Species 2000 & ITIS Catalogue of Life, 2012 Annual Checklist, Reading.

2. Fast versus slow growing tuna species: Age, growth, and implications for population dynamics and fisheries management;Murua;Rev. Fish Biol. Fish.,2017

3. Stock assessment for Atlantic yellowfin tuna based on extended surplus production model considering life history;Zhipan;Acta Oceanol. Sin.,2022

4. Impact of Abnormal Climatic Events on the CPUE of Yellowfin Tuna Fishing in the Central and Western Pacific;Weifeng;Sustainability,2022

5. Benetti, D.D., Partridge, G.J., and Buentello, A. (2016). Advances in Tuna Aquaculture, Academic Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3