Abstract
Underwater optical wireless communication (UOWC) has great potential to provide high-speed and intensive communications over short ranges underwater. However, the mobility of the UOWC system is limited by the strict alignment requirements between the transceivers. In this paper, a multi-degree-of-freedom (MDOF) UOWC system with high flexibility and improved transmission performance is proposed and experimentally demonstrated based on the off-the-shelf light-emitting diode (LED) source. A hardware pre-equalization circuit is employed at the transmitter to extend the modulation bandwidth from 5.03 MHz to 50 MHz. At the receiving end, a Fresnel lens array is constructed to achieve efficient convergence of multiple incident optical signals from different directions. To improve the underwater signal transmission quality, we designed an additional digital signal recovery module after the trans-impedance amplifier. Finally, an experimental system is established with a 460 nm blue LED. The communication reliability of the system is verified by the measurement of the eye diagram and the bit error rate of the recovered signal at the receiving end. The experimental results show that optical signals from three different incident directions with a maximum data rate of 100 Mbps are reliably transmitted over a 1.2-m-long water tank using the non-return-to-zero on-off-keying modulation format.
Funder
China Postdoctoral Science Foundation
Fundamental Research Funds for the Central Universities
National Key Research and Development Program of China
Liaoning Revitalization Talents Program
Major Key Project of PCL
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献