Effectiveness of Sacrificial Shielding for Blast Mitigation of Steel Floating Pontoons

Author:

Khalifa Yasser A.,Lotfy Mohamed N.,Fathallah ElsayedORCID

Abstract

Floating pontoons have played a supreme and indispensable role in crises and disasters for both civil and military purposes. Floating bridges and ferries are exposed to blast loadings in the case of wars or terrorist attacks. The protection effectiveness of sacrificial cladding subjected to a blast was numerically investigated. In this study, a steel ferry has been simulated and exposed to side explosions with different explosive charges at certain stand-off distances, according to military standards from NATO and American standard TM5. In this simulation, nonlinear three-dimensional hydro-code numerical simulation ANSYS autodyn-3d has been used. The results reported that the ferry could withstand a charge of 5 kg TNT at a stand-off distance of 1 m without failure. The main objective of this research is to achieve a design that would increase the capacity against the blast loading with minimal plastic deformation in the absence of any failure in the ferry. Therefore, an innovative mitigation system has been proposed to dissipate the blast energy of the explosion based on the scientific theory of impedance using sacrificial cladding. The new mitigation system used a specific structural system in order to install the existing pontoon structure without any distraction. The response, elastic deformations, plastic deformations and plastic failure of the ferry were illustrated in this paper. Furthermore, the results revealed that the proposed mitigation system could mitigate more than 50% of the blast waves. The new design revealed promising results, which makes it suitable for mitigating blast waves. Finally, the results were provided with a reference for the preliminary design and application of sacrificial cladding for structural protection against blast waves.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3