Elemental Composition of Particulate Matter in the Euphotic and Benthic Boundary Layers of the Barents and Norwegian Seas

Author:

Starodymova Dina P.ORCID,Kravchishina Marina D.ORCID,Kochenkova Anastasia I.,Lokhov Alexey S.,Makhnovich Natalia M.,Vazyulya Svetlana V.ORCID

Abstract

The increasing influence of Atlantic inflows in the Arctic Ocean in recent decades has had a potential impact on regional biogeochemical cycles of major and trace elements. The warm and salty Atlantic water, entering the Eurasian Basin through the Norwegian Sea margin and the Barents Sea, affects particle transport, sink, phyto-, and zooplankton community structure and could have far-reaching consequences for the marine ecosystems. This study discusses the elemental composition of suspended particulate matter and fluffy-layer suspended matter derived from samples collected in the Barents Sea and northern Norwegian Sea in August 2017. The mosaic distribution of SPM elemental composition is mainly determined by two factors: (i) The essential spatial variability of biological processes (primary production, abundance, and phytoplankton composition) and (ii) differences in the input of terrigenous sedimentary matter to the sea area from drainage sources (weak river runoff, melting of archipelago glaciers, etc.). The distribution of lithogenic, bioessential, and redox-sensitive groups of elements in the particulate matter was studied at full-depth profiles. Marine cycling of strontium in the Barents Sea is shown to be significantly affected by increasing coccolithophorid bloom, which is associated with Atlantic water. Mn, Cu, Cd, and Ba significantly enrich the suspended particulate matter of the benthic nepheloid layer relative to the fluffy layer particulate matter within the benthic boundary layer.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

state assignment of the Shirshov Institute of Oceanology RAS

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3