Predict Vessel Traffic with Weather Conditions Based on Multimodal Deep Learning

Author:

Xiao HuORCID,Zhao Yan,Zhang Hao

Abstract

Vessel management calls for real-time traffic flow prediction, which is difficult under complex circumstances (incidents, weather, etc.). In this paper, a multimodal learning method named Prophet-and-GRU (P&G) considering weather conditions is proposed. This model can learn both features of the long-term and interdependence of multiple inputs. There are three parts of our model: first, the Decomposing Layer uses an improved Seasonal and Trend Decomposition Using Loess (STL) based on Prophet to decompose flow data; second, the Processing Layer uses a Sequence2Sequence (S2S) module based on Gated Recurrent Units (GRU) and attention mechanism with a special mask to extract nonlinear correlation features; third, the Joint Predicting Layer produces the final prediction result. The experimental results show that the proposed model predicts traffic with an accuracy of over 90%, which outperforms advanced models. In addition, this model can trace real-time traffic flow when there is a sudden drop.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference42 articles.

1. Merging conventionally navigating ships and MASS-merging VTS, FOC and SCC?;Baldauf;TransNav Int. J. Mar. Navig. Saf. Sea Transp.,2019

2. Praetorius, G. (2014). Vessel Traffic Service (VTS): A Maritime Information Service or Traffic Control System?: Understanding Everyday Performance and Resilience in a Socio-Technical System under Change. [Ph.D. Thesis, Chalmers Tekniska Högskola].

3. A socio-technical perspective on the future Vessel Traffic Services;Relling;Necesse,2019

4. ARIMA models to predict next-day electricity prices;Contreras;IEEE Trans. Power Syst.,2003

5. Short-term traffic flow prediction using seasonal ARIMA model with limited input data;Kumar;Eur. Transp. Res. Rev.,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3