Anthropogenic Impacts on Water Quality in a Small, Forested Mountain Catchment: A Case Study of the Seebächle, Black Forest, Southern Germany

Author:

Siegwald Laura,de Jong CarmenORCID

Abstract

The aims of this case study are to assess water quality in a small, forested mountain catchment in the Black Forest, forming part of a National Park and Natura 2000 zone. Field work was carried out in the catchment of the Seebächle torrent, a small headwater basin of the River Acher, a confluent of the Rhine, in Southern Germany between late winter and early summer of 2018. The catchment has a diverse natural setting of water bodies, including springs, torrents, and a lake, and is impacted by anthropogenic activities such as summer tourism, winter sports, two quarries, road traffic, and an isolated construction site. Physio-chemical and bacterial water samples were obtained at 10 measurement sites, including a spring, a lake (Mummelsee), a fountain, artificial and natural snow on and next to a ski run (Seibelseckle), artificial ditches and parking lots draining the ski run, and the Seebächle torrent above two granite mines. Samples were either taken directly on site or analyzed in corresponding hydrology and hospital microbiology laboratories. Water of the Seebächle is oxygen-rich, peaty, and mostly acidic, but the pH varies between 4.1 and 9.5 throughout the catchment, inclining towards acid in the fountain and below the ski run and towards alkaline in the lake. Conductivity is spatially highly variable, reaching the most elevated values below the ski run and its parking lot (149 µS/cm). A high density of bacteria including enterobacteria was detected at nearly all sites. Human pathogenic bacteria were found below and surrounding the ski run, at parking lots draining the ski run, as well as at the lowest site during the mid-spring campaign. They were also detected in the touristically highly frequented lake and in the spring feeding the lake during the end-of-spring campaign. Whilst most physico-chemical parameters followed a similar pattern and fell within good to very good EU drinking water quality status, the lake turbidity levels (19.2 NTU) by far exceeded norms after ice thawing. The most contaminated site in terms of bacteria and turbidity (5.2 NTU), ammonium nitrogen (0.18 mg/L), and total nitrogen (5.06 mg/L) was the spring feeding the Mummelsee draining the construction site of a new restaurant. These field analyses show that the water quality of a virtually uninhabited, natural headwater catchment is strongly interconnected and can degrade both by direct and indirect impacts of overtourism.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference59 articles.

1. Ecosystem Services of Headwater Catchments;Křeček,2017

2. Forest Hydrology: Processes, Management and Assessment;Amatya,2016

3. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6

4. Integrated Monitoring Guide for SDG 6: Targets and Global Indicators,2016

5. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. s.l,2000

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3