Introduction to Semi-Classical Analysis for Digital Errors of Qubit in Quantum Processor

Author:

Hirota OsamuORCID

Abstract

In recent years, remarkable progress has been achieved in the development of quantum computers. For further development, it is important to clarify properties of errors by quantum noise and environment noise. However, when the system scale of quantum processors is expanded, it has been pointed out that a new type of quantum error, such as nonlinear error, appears. It is not clear how to handle such new effects in information theory. First of all, one should make the characteristics of the error probability of qubits clear as communication channel error models in information theory. The purpose of this paper is to survey the progress for modeling the quantum noise effects that information theorists are likely to face in the future, to cope with such nontrivial errors mentioned above. This paper explains a channel error model to represent strange properties of error probability due to new quantum noise. By this model, specific examples on the features of error probability caused by, for example, quantum recurrence effects, collective relaxation, and external force, are given. As a result, it is possible to understand the meaning of strange features of error probability that do not exist in classical information theory without going through complex physical phenomena.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference48 articles.

1. Quantum Computing: Progress and Prospects,2019

2. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Processes,2020

3. Sufficient condition on noise correlations for scalable quantum computing

4. Approaches to quantum error correcction;Kempe;Poincare Semin.,2005

5. Quantum Information Processing and Quantum Error Correction: An Engineering Approach;Djordjevic,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum-Resistant Cryptography;Advances in Information Security, Privacy, and Ethics;2024-07-12

2. Quantum Stream Cipher Based on Holevo–Yuen Theory;Entropy;2022-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3