Rapid Recent Deforestation Incursion in a Vulnerable Indigenous Land in the Brazilian Amazon and Fire-Driven Emissions of Fine Particulate Aerosol Pollutants

Author:

de Oliveira GabrielORCID,Chen Jing M.,Mataveli Guilherme A. V.ORCID,Chaves Michel E. D.ORCID,Seixas Hugo T.ORCID,Cardozo Francielle da S.,Shimabukuro Yosio E.,He LimingORCID,Stark Scott C.,dos Santos Carlos A. C.ORCID

Abstract

Deforestation in the Brazilian Amazon is related to the use of fire to remove natural vegetation and install crop cultures or pastures. In this study, we evaluated the relation between deforestation, land-use and land-cover (LULC) drivers and fire emissions in the Apyterewa Indigenous Land, Eastern Brazilian Amazon. In addition to the official Brazilian deforestation data, we used a geographic object-based image analysis (GEOBIA) approach to perform the LULC mapping in the Apyterewa Indigenous Land, and the Brazilian biomass burning emission model with fire radiative power (3BEM_FRP) to estimate emitted particulate matter with a diameter less than 2.5 µm (PM2.5), a primary human health risk. The GEOBIA approach showed a remarkable advancement of deforestation, agreeing with the official deforestation data, and, consequently, the conversion of primary forests to agriculture within the Apyterewa Indigenous Land in the past three years (200 km2), which is clearly associated with an increase in the PM2.5 emissions from fire. Between 2004 and 2016 the annual average emission of PM2.5 was estimated to be 3594 ton year−1, while the most recent interval of 2017–2019 had an average of 6258 ton year−1. This represented an increase of 58% in the annual average of PM2.5 associated with fires for the study period, contributing to respiratory health risks and the air quality crisis in Brazil in late 2019. These results expose an ongoing critical situation of intensifying forest degradation and potential forest collapse, including those due to a savannization forest-climate feedback, within “protected areas” in the Brazilian Amazon. To reverse this scenario, the implementation of sustainable agricultural practices and development of conservation policies to promote forest regrowth in degraded preserves are essential.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3