Abstract
The functional components of vibrating mesh nebulizers are a piezoelectric ceramic with a mesh mounted on one side, a reservoir, and a driving circuit. The piezoelectric material vibrates at a specific intrinsic frequency, and when the mechanical resonance frequency of the piezoelectric ceramic and the frequency of the applied electrical signal match, the vibration amplitude of the ceramic is greatest. In the present study, nebulizing performances were tested with respect to driving voltage amplitude after automatic resonance frequency tuning (ARFT) and/or impedance matching (IM) for salbutamol and glycerol solutions. A 1% mismatch of resonance frequency reduced the output rate by 11.0~30.1% and increased particle size by 1.6~7.7% and power consumption increased by 6.6~13.6%. Driving at 30 Vpp after ARFT and IM increased output rate by 45% and decreased power consumption by 31% compared with operation at nominal resonance frequency without IM at 50 Vpp. Nebulization of viscous solutions was also enhanced by applying ARFT with IM. The study shows the application of ARFT with IM improves vibrating mesh nebulizer performance and reduces power consumption.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献