HARVEST: High-Resolution Haptic Vest and Fingertip Sensing Glove That Transfers Tactile Sensation of Fingers to the Back

Author:

Moriyama Taha,Kajimoto HiroyukiORCID

Abstract

Human fingertips are densely populated with tactile receptors and are hence incredibly sensitive. However, wearing gloves on the fingers drastically reduces the tactile information available to the fingertips, such as the texture and shape of the object, and makes it difficult to perform dexterous work. As a solution, in this study, we developed a high-resolution haptic vest that transfers the tactile sensation of the fingertips to the back. The haptic vest contains 80 voice-coil type vibrators which are located at each of the two discrimination thresholds on the back and can be driven independently. The tactile sensation of the fingertips is transferred to the back using the developed haptic vest in combination with a sensing glove that can detect the pressure distribution on the finger skin at up to 100 points. Different experiments were conducted to validate the performance of the proposed haptic vest and sensing gloves. The use of the haptic vest and the sensing glove enabled the user to perceive the shape of a planar object more accurately when compared to the case where the user wore only the glove.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Intensive and Extensive Aspects of Tactile Sensitivity as a Function of Body Part, Sex, and Laterality;Weinstein,1968

2. Artificial Redirection of Sensation From Prosthetic Fingers to the Phantom Hand Map on Transradial Amputees: Vibrotactile Versus Mechanotactile Sensory Feedback

3. Hap-Link: Wearable Haptic Device on the Forearm that Presents Haptics Sensations Corresponding to the Fingers;Moriyama;SIGGRAPH Asia Emerg. Technol.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3