A Virtual Prototype for Fast Design and Visualization of Gerotor Pumps

Author:

Pareja-Corcho JuanORCID,Moreno AitorORCID,Simoes BrunoORCID,Pedrera-Busselo Asier,San-Jose Ekain,Ruiz-Salguero OscarORCID,Posada JorgeORCID

Abstract

In the context of generation of lubrication flows, gear pumps are widely used, with gerotor-type pumps being specially popular, given their low cost, high compactness, and reliability. The design process of gerotor pumps requires the simulation of the fluid dynamics phenomena that characterize the fluid displacement by the pump. Designers and researchers mainly rely on these methods: (i) computational fluid dynamics (CFD) and (ii) lumped parameter models. CFD methods are accurate in predicting the behavior of the pump, at the expense of large computing resources and time. On the other hand, Lumped Parameter models are fast and they do not require CFD software, at the expense of diminished accuracy. Usually, Lumped Parameter fluid simulation is mounted on specialized black-box visual programming platforms. The resulting pressures and flow rates are then fed to the design software. In response to the current status, this manuscript reports a virtual prototype to be used in the context of a Digital Twin tool. Our approach: (1) integrates pump design, fast approximate simulation, and result visualization processes, (2) does not require an external numerical solver platforms for the approximate model, (3) allows for the fast simulation of gerotor performance using sensor data to feed the simulation model, and (4) compares simulated data vs. imported gerotor operational data. Our results show good agreement between our prediction and CFD-based simulations of the actual pump. Future work is required in predicting rotor micro-movements and cavitation effects, as well as further integration of the physical pump with the software tool.

Funder

Eusko Jaurlaritza

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3