The Importance of Being Versatile: INFN-CHNet MA-XRF Scanner on Furniture at the CCR “La Venaria Reale”

Author:

Sottili Leandro,Guidorzi LauraORCID,Mazzinghi Anna,Ruberto Chiara,Castelli Lisa,Czelusniak Caroline,Giuntini LorenzoORCID,Massi MirkoORCID,Taccetti Francesco,Nervo MarcoORCID,De Blasi Stefania,Torres Rodrigo,Arneodo Francesco,Re AlessandroORCID,Lo Giudice Alessandro

Abstract

At present, the use of non-destructive, non-invasive X-ray-based techniques is well established in heritage science for the analysis and conservation of works of art. X-ray fluorescence (XRF) plays a fundamental role since it provides information on the elemental composition, contributing to the identification of the materials present on the superficial layers of an artwork. Whenever XRF is combined with the capability of scanning an area to provide the elemental distribution on a surface, the technique is referred to as macro X-ray fluorescence (MA-XRF). The heritage science field, in which the technique is extensively applied, presents a large variety of case studies. Typical examples are paintings, ceramics, metallic objects and manuscripts. This work presents an uncommon application of MA-XRF analysis to furniture. Measurements have been carried out with the MA-XRF scanner of the INFN-CHNet collaboration at the Centro di Conservazione e Restauro “La Venaria Reale”, a leading conservation centre in the field. In particular, a chinoiserie lacquered cabinet of the 18th century and a desk by Pietro Piffetti (1701–1777) have been analysed with a focus on the characterisation of decorative layers and different materials (e.g., gilding in the former and ivory in the latter). The measurements have been carried out using a telemeter for non-planar surfaces, and with collimators of 0.8 mm and 0.4 mm diameter, depending on the spatial resolution needed. The combination of the small measuring head with the use of the telemeter and of a small collimator has guaranteed the ability to scan difficult-to-reach areas with high spatial resolution in a reasonable time (20 × 10 mm2 with 0.2 mm step in less than 20 min).

Funder

Istituto Nazionale di Fisica Nucleare

Horizon 2020

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3