Abstract
Virtual assembly (VA) is a method to simulate the physical assembly (PA) of scanned parts. Small local part deviations can accumulate to large assembly deviations limiting the product quality. The propagation of geometrical deviations onto the assembly is a crucial step in tolerance management to assess the assembly quality. Current approaches for VA do not sufficiently consider the physical joining process. Therefore, the propagated assembly geometry may deviate strongly from the PA. In the state of the art, only specific and complex methods for particular joining processes are known. In this paper, the concept of Surrogate Models (SMs) is introduced, representing the connection between part and assembly geometries for particular joining processes. A Surrogate Modelling Toolbox (SMT) is developed that is intended to cover the variety of joining processes by the implementation of suitable SMs. A particular SM is created by the composition of suitable Surrogate Operations (SOs). An open list of SOs is presented. The composition of a SM is studied for a laser welding process of two polymer components. The resulting VA is compared to the PA in order to validate the developed model and is quantified by the exploitation ratio R.
Funder
Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献