Lineal Energy of Proton in Silicon by a Microdosimetry Simulation

Author:

Chiang YuehORCID,Tan Cher MingORCID,Tung Chuan-Jong,Lee Chung-Chi,Chao Tsi-Chian

Abstract

Single event upset, or Single Event Effect (SEE) is increasingly important as semiconductor devices are entering into nano-meter scale. The Linear Energy Transfer (LET) concept is commonly used to estimate the rate of SEE. The SEE, however, should be related to energy deposition of each stochastic event, but not LET which is a non-stochastic quantity. Instead, microdosimetry, which uses a lineal calculation of energy lost per step for each specific track, should be used to replace LET to predict microelectronic failure from SEEs. Monte Carlo simulation is used for the demonstration, and there are several parameters needed to optimise for SEE simulation, such as the target size, physical models and scoring techniques. We also show the thickness of the sensitive volume, which also correspond to the size of a device, will change the spectra of lineal energy. With a more comprehensive Monte Carlo simulation performed in this work, we also show and explain the differences in our results and the reported results such as those from Hiemstra et al. which are commonly used in semiconductor industry for the prediction of SEE in devices.

Funder

Taiwan Semiconductor Manufacturing Company

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3