Influence of Internal Structure of the Sorbents on Diazepam Sorption from Simulated Intestinal Fluid

Author:

Stefan Mircea,Stefan Ioana,Negoita Ioana-Alexandra,Ordeanu Viorel,Stefan Daniela SiminaORCID

Abstract

The capacity of natural Na-montmorillonite and activated charcoal for sorption of diazepam from simulated intestinal fluid (SIF) was studied. The main characteristics of the sorbents were determined. In order to characterize the sorption process of diazepam the influence of the pH, contact time and ethanol presence in SIF was analyzed. Adsorption isotherms for the diazepam-activated charcoal and diazepam-natural Na-montmorillonite systems were determined. The Langmuir isotherm model provided a very good description of diazepam sorption. Furthermore, the pH-drift method was used to determine the specific pH at zero point of charge (pHzpc) of the sorbents. The obtained results show that the internal structure of the sorbents and pH of the SIF solutions are very important for diazepam sorption. Both the surface of the activated charcoal and natural Na-montmorillonite are positively charged below the pHzpc so the sorption of diazepam is higher below this point and occur by van der Waals forces. The presence of ethanol in simulated intestinal fluid lowers the adsorption of diazepam on both sorbents.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Drug related deaths between 2008 and A retrospective study in 32 Romanian counties;Dermengiu;Cent. Eur. J. Med.,2013

2. Poisoning by drugs and chemicals;Vale,2010

3. Drug and Opioid-Involved Overdose Deaths — United States, 2017–2018

4. Relative toxicity of benzodiazepines in overdose

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3