Hybrid Spine Simulator Prototype for X-ray Free Pedicle Screws Fixation Training

Author:

Condino SaraORCID,Turini GiuseppeORCID,Mamone Virginia,Parchi Paolo DomenicoORCID,Ferrari VincenzoORCID

Abstract

Simulation for surgical training is increasingly being considered a valuable addition to traditional teaching methods. 3D-printed physical simulators can be used for preoperative planning and rehearsal in spine surgery to improve surgical workflows and postoperative patient outcomes. This paper proposes an innovative strategy to build a hybrid simulation platform for training of pedicle screws fixation: the proposed method combines 3D-printed patient-specific spine models with augmented reality functionalities and virtual X-ray visualization, thus avoiding any exposure to harmful radiation during the simulation. Software functionalities are implemented by using a low-cost tracking strategy based on fiducial marker detection. Quantitative tests demonstrate the accuracy of the method to track the vertebral model and surgical tools, and to coherently visualize them in either the augmented reality or virtual fluoroscopic modalities. The obtained results encourage further research and clinical validation towards the use of the simulator as an effective tool for training in pedicle screws insertion in lumbar vertebrae.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3