Analysis of Polygonal Vortex Flows in a Cylinder with a Rotating Bottom

Author:

Rashkovan A.,Amar S.D.,Bieder U.,Ziskind G.

Abstract

The present paper provides a physically sound numerical modeling of liquid flows experimentally observed inside a vertical circular cylinder with a stationary envelope, rotating bottom and open top. In these flows, the resulting vortex depth may be such that the rotating bottom disk becomes partially exposed, and rather peculiar polygon shapes appear. The parameters and features of this work are chosen based on a careful analysis of the literature. Accordingly, the cylinder inner radius is 145 mm and the initial water height is 60 mm. The experiments with bottom disk rotation frequencies of 3.0, 3.4, 4.0 and 4.6 Hz are simulated. The chosen frequency range encompasses the regions of ellipse and triangle shapes as observed in the experimental studies reported in the literature. The free surface flow is expected to be turbulent, with the Reynolds number of O(105). The Large Eddy Simulation (LES) is adopted as the numerical approach, with a localized dynamic Subgrid-Scale Stresses (SGS) model including an energy equation. Since the flow obviously requires a surface tracking or capturing method, a volume-of-fluid (VOF) approach has been chosen based on the findings, where this method provided stable shapes in the ranges of parameters found in the corresponding experiments. Expected ellipse and triangle shapes are revealed and analyzed. A detailed character of the numerical results allows for an in-depth discussion and analysis of the mechanisms and features which accompany the characteristic shapes and their alterations. As a result, a unique insight into the polygon flow structures is provided.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference73 articles.

1. Introduction to Vortex Theory;Lugt,1996

2. Rotating Flows;Childs,2011

3. The bathtub vortex in a rotating container

4. A note on liquid vortex sloshing and Kelvin's equilibria

5. Vibrations of a columnar vortex;Kelvin;Philos. Mag.,1880

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3