An Efficient Palette Generation Method for Color Image Quantization

Author:

Huang Shu-ChienORCID

Abstract

This article describes an efficient method to generate a color palette for color image quantization. The method consists of two stages. In the first stage, the initial palette is generated. Initially, the color palette is an empty set. First, the N colors are generated according to the data distribution of the input image in the RGB (Red, Green, Blue) color space. Then, one color is selected from the N colors and this color is added to the initial palette, and the step is repeated until the color number of the initial palette is equal to K. In the second stage, the quantized image is generated using the fast K-means algorithm. There are many sampling rates used in this study. For each sampled pixel, a fast searching method is employed to efficiently determine the closest color in the palette. Experimental results show that the high-quality quantized images can be generated by the proposed method. When the sampling rate equals 0.125, the computation time of the proposed method is less than 0.3 s for all cases.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Image-Based User Interface Color Theme Generation;Applied Sciences;2024-03-28

2. A dichotomy color quantization algorithm for the HSI color space;Scientific Reports;2023-05-19

3. Forty years of color quantization: a modern, algorithmic survey;Artificial Intelligence Review;2023-04-27

4. A new spin on color quantization;Journal of Statistical Mechanics: Theory and Experiment;2023-03-01

5. The incremental online k-means clustering algorithm and its application to color quantization;Expert Systems with Applications;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3