Bridge-Mediated RET between Two Chiral Molecules

Author:

Salam AORCID

Abstract

Molecular quantum electrodynamics (QED) theory is employed to calculate the rate of resonance energy transfer (RET) between a donor, D, described by an electric dipole and quadrupole, and magnetic dipole coupling, and an identical acceptor molecule, A, that is mediated by a third body, T, which is otherwise inert. A single virtual photon propagates between D and T, and between T and A. Time-dependent perturbation theory is used to compute the matrix element, from which the transfer rate is evaluated using the Fermi golden rule. This extends previous studies that were limited to the electric dipole approximation only and admits the possibility of the exchange of excitation between a chiral emitter and absorber. Rate terms are computed for specific pure and mixed multipole-dependent contributions of D and A for both an oriented arrangement of the three particles and for the freely tumbling situation. Mixed multipole moment contributions, such as those involving electric–magnetic dipole or electric dipole–quadrupole coupling at one center, do not survive random orientational averaging. Interestingly, the mixed electric–magnetic dipole D and A rate term is non-vanishing and discriminatory, exhibiting a dependence on the chirality of the emitter and absorber, and is entirely retarded. It vanishes, however, if D and A are oriented perpendicularly to one another. Near- and far-zone asymptotes of isotropic contributions to the rate are also evaluated, demonstrating radiationless short-range transfer and inverse-square radiative exchange at very large separations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

1. Resonance Energy Transfer;Andrews,1999

2. Introductory Quantum Electrodynamics;Power,1964

3. Molecular Quantum Electrodynamics;Craig,1998

4. Molecular Quantum Electrodynamics;Salam,2010

5. Quantum electrodynamics effects in atoms and molecules

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3