Microarchitectural Characterization on a Mobile Workload

Author:

Lee Woohyong,Lee Jiyoung,Park Bo KyungORCID,Kim R. Young ChulORCID

Abstract

Geekbench is one of the most referenced cross-platform benchmarks in the mobile world. Most of its workloads are synthetic but some of them aim to simulate real-world behavior. In the mobile world, its microarchitectural behavior has been reported rarely since the hardware profiling features are limited to the public. As a popular mobile performance workload, it is hard to find Geekbench’s microarchitecture characteristics in mobile devices. In this paper, a thorough experimental study of Geekbench performance characterization is reported with detailed performance metrics. This study also identifies mobile system on chip (SoC) microarchitecture impacts, such as the cache subsystem, instruction-level parallelism, and branch performance. After the study, we could understand the bottleneck of workloads, especially in the cache sub-system. This means that the change of data set size directly impacts performance score significantly in some systems and will ruin the fairness of the CPU benchmark. In the experiment, Samsung’s Exynos9820-based platform was used as the tested device with Android Native Development Kit (NDK) built binaries. The Exynos9820 is a superscalar processor capable of dual issuing some instructions. To help performance analysis, we enable the capability to collect performance events with performance monitoring unit (PMU) registers. The PMU is a set of hardware performance counters which are built into microprocessors to store the counts of hardware-related activities. Throughout the experiment, functional and microarchitectural performance profiles were fully studied. This paper describes the details of the mobile performance studies above. In our experiment, the ARM DS5 tool was used for collecting runtime PMU profiles including OS-level performance data. After the comparative study is completed, users will understand more about the mobile architecture behavior, and this will help to evaluate which benchmark is preferable for fair performance comparison.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference15 articles.

1. Android NDK for Developershttps://developer.android.com/ndk

2. Intel Vtune Websitehttps://software.intel.com/en-us/vtune

3. Samsung Galaxy S10 Spec Official Websitehttps://www.samsung.com/global/galaxy/galaxy-s10/specs/

4. A Benchmark Characterization of the EEMBC Benchmark Suite

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vector-Processing for Mobile Devices: Benchmark and Analysis;2023 IEEE International Symposium on Workload Characterization (IISWC);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3