Abstract
Geekbench is one of the most referenced cross-platform benchmarks in the mobile world. Most of its workloads are synthetic but some of them aim to simulate real-world behavior. In the mobile world, its microarchitectural behavior has been reported rarely since the hardware profiling features are limited to the public. As a popular mobile performance workload, it is hard to find Geekbench’s microarchitecture characteristics in mobile devices. In this paper, a thorough experimental study of Geekbench performance characterization is reported with detailed performance metrics. This study also identifies mobile system on chip (SoC) microarchitecture impacts, such as the cache subsystem, instruction-level parallelism, and branch performance. After the study, we could understand the bottleneck of workloads, especially in the cache sub-system. This means that the change of data set size directly impacts performance score significantly in some systems and will ruin the fairness of the CPU benchmark. In the experiment, Samsung’s Exynos9820-based platform was used as the tested device with Android Native Development Kit (NDK) built binaries. The Exynos9820 is a superscalar processor capable of dual issuing some instructions. To help performance analysis, we enable the capability to collect performance events with performance monitoring unit (PMU) registers. The PMU is a set of hardware performance counters which are built into microprocessors to store the counts of hardware-related activities. Throughout the experiment, functional and microarchitectural performance profiles were fully studied. This paper describes the details of the mobile performance studies above. In our experiment, the ARM DS5 tool was used for collecting runtime PMU profiles including OS-level performance data. After the comparative study is completed, users will understand more about the mobile architecture behavior, and this will help to evaluate which benchmark is preferable for fair performance comparison.
Funder
Ministry of Trade, Industry and Energy
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference15 articles.
1. Android NDK for Developershttps://developer.android.com/ndk
2. Intel Vtune Websitehttps://software.intel.com/en-us/vtune
3. Samsung Galaxy S10 Spec Official Websitehttps://www.samsung.com/global/galaxy/galaxy-s10/specs/
4. A Benchmark Characterization of the EEMBC Benchmark Suite
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Vector-Processing for Mobile Devices: Benchmark and Analysis;2023 IEEE International Symposium on Workload Characterization (IISWC);2023-10-01