Performance Study of Grass-Derived Nano-Cellulose and Polycaprolactone Composites for 3D Printing

Author:

Feng ChenORCID,Zhou Jiping,Xu Xiaodong,Jiang Yani,Shi Hongcan,Zhao Guoqi

Abstract

In recent years, 3D printing has received increasing attention from researchers. This technology overcomes the limitations of traditional technologies by printing precise and personalized scaffold with arbitrary shapes, pore structures, and porosities for the applications in various tissues. The cellulose nanocrystal (CNC) is extracted from Humulus Japonicus (HJS) and mixed with poly(ε-caprolactone) (PCL) to prepare a series of CNC/PCL composites for printing. Based on the analysis of the physical and chemical properties of the series of the CNC/PCL composites, an optimal mass ratio of CNC to PCL was obtained. The Solidworks was used to simulate the stretching and compression process of the scaffolds with three different patterns under an external force. The flow of nutrient solution in the scaffolds with different patterns was simulated by ANSYS FLUENT, and then a new optimization scaffold pattern with a concave hexagon shape was advised based on the simulation results. Collectively, the mechanical test results of the material and scaffold confirmed that the optimal filling amount of the CNC was 5%, and the scaffold pattern with concave hexagon shape exhibited better mechanical properties and suitable for the transport of cells and nutrients, which is expected to be more widely used in 3D printing.

Funder

National Natural Science Foundation of China

Yangzhou University Science and Technology Cooperation Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3