Adaptive Automation Assembly Systems in the Industry 4.0 Era: A Reference Framework and Full–Scale Prototype

Author:

Bortolini MarcoORCID,Faccio Maurizio,Galizia Francesco GabrieleORCID,Gamberi Mauro,Pilati Francesco

Abstract

Industry 4.0 emerged in the last decade as the fourth industrial revolution aiming at reaching greater productivity, digitalization and operational efficiency standard. In this new era, if compared to automated assembly systems, manual assembly systems (MASs) are still characterized by wide flexibility but poor productivity levels. To reach acceptable performances in terms of both productivity and flexibility, higher automation levels are required to increase the skills and capabilities of the human operators with the aim to design next-generation assembly systems having higher levels of adaptivity and collaboration between people and automation/information technology. In the current literature, such systems are called adaptive automation assembly systems (A3Ss). For A3Ss, few design approaches and industrial prototypes are available. This paper, extending a previous contribution by the Authors, expands the lacking research in the field and proposes a general framework guiding toward A3S effective design and validation. The framework is applied to a full-scale prototype, highlighting its features together with the technical- and human-oriented improvements arising from its adoption. Specifically, evidence from this study show a set of benefits from adopting innovative A3Ss in terms of reduction of the assembly cycle time (about 30%) with a consequent increase of the system productivity (about 45%) as well as relevant improvements of ergonomic posture indicators (about 15%). The definition of a general framework for A3S design and validation and the integration of the productivity and ergonomic analysis of such systems are missing in the current literature, representing an element of innovation. Globally, this research paper provides advanced knowledge to guide research, industrial companies and practitioners in switching from traditional to advanced assembly systems in the emerging Industry 4.0 era matching current industrial and market features.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3