Biosynthesis of Polyhydroxyalkanoates from Defatted Chlorella Biomass as an Inexpensive Substrate

Author:

Khomlaem ChaninORCID,Aloui HajerORCID,Kim Beom SooORCID

Abstract

Microalgae biomass has been recently used as an inexpensive substrate for the industrial production of polyhydroxyalkanoates (PHAs). In this work, a dilute acid pretreatment using 0.3 N of hydrochloric acid (HCl) was performed to extract reducing sugars from 10% (w/v) of defatted Chlorella biomass (DCB). The resulting HCl DCB hydrolysate was used as a renewable substrate to assess the ability of three bacterial strains, namely Bacillus megaterium ALA2, Cupriavidus necator KCTC 2649, and Haloferax mediterranei DSM 1411, to produce PHA in shake flasks. The results show that under 20 g/L of DCB hydrolysate derived sugar supplementation, the cultivated strains successfully accumulated PHA up to 29.7–75.4% of their dry cell weight (DCW). Among the cultivated strains, C. necator KCTC 2649 exhibited the highest PHA production (7.51 ± 0.20 g/L, 75.4% of DCW) followed by H. mediterranei DSM 1411 and B. megaterium ALA2, for which a PHA content of 3.79 ± 0.03 g/L (55.5% of DCW) and 0.84 ± 0.06 g/L (29.7% of DCW) was recorded, respectively. Along with PHA, a maximum carotenoid content of 1.80 ± 0.16 mg/L was produced by H. mediterranei DSM 1411 at 120 h of cultivation in shake flasks. PHA and carotenoid production increased by 1.45- and 1.37-fold, respectively, when HCl DCB hydrolysate biotransformation was upscaled to a 1 L of working volume fermenter. Based on FTIR and 1H NMR analysis, PHA polymers accumulated by B. megaterium ALA2 and C. necator KCTC 2649 were identified as homopolymers of poly(3-hydroxybutyrate). However, a copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 3-hydroxyvalerate fraction of 10.5 mol% was accumulated by H. mediterranei DSM 1411.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3