Structural, Mechanical, and Dielectric Properties of Polydimethylsiloxane and Silicone Elastomer for the Fabrication of Clinical-Grade Kidney Phantom

Author:

Izdihar KamalORCID,Abdul Razak Hairil RashmizalORCID,Supion Nurzulaikha,Karim Muhammad Khalis AbdulORCID,Osman Nurul Huda,Norkhairunnisa MazlanORCID

Abstract

This study aimed to introduce an alternative, inexpensive, and straightforward polymer with specific mechanical and dielectric properties suitable for the fabrication of a clinical-grade kidney phantom. Two polymer-based phantom materials, polydimethylsiloxane (PDMS) and silicone elastomer (SE), were investigated for their capability to meet the requirements. The concentration ratios of base to curing agent (B/C) were 9.5/1.5, 19/3, 10/1, 20/2, 10.5/0.5, and 21/1 for PDMS and 4.5/5.5, 10/12, 5/5, 11/11, 5.5/4.5, and 12/10 for SE. All samples were mixed, degassed, and poured into Petri dishes and small beakers. The polymer was cured under room temperature for 2 h and then demolded from the hard mold. The air bubbles produced were removed using a vacuum desiccator for 30 min. All samples underwent mechanical testing (tensile strength and elastic modulus), and their dielectric properties were measured using a dielectric probe kit equipped with 85071E materials measurement software. The radiation attenuation properties were also measured using PhyX-Zetra for PDMS phantoms with the chemical formula C2H6OSi. Small changes in base and cross-linker play an essential role in modifying the elastic modulus and tensile strength. The effective atomic number of PDMS showed a similar pattern with human kidney tissue at the intermediate energy level of 1.50 × 10−1 to 1 MeV. Therefore, PDMS can potentially be used to mimic the human kidney in terms of tensile strength, flexibility, the acceptable real part of the complex dielectric constant ε′r, and conductivity, which allows it to be used as a stable kidney phantom for medical imaging purposes.

Funder

Universiti Putra Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3