Minimizing Energy and Computation in Long-Running Software

Author:

Gelenbe ErolORCID,Siavvas MiltiadisORCID

Abstract

Long-running software may operate on hardware platforms with limited energy resources such as batteries or photovoltaic, or on high-performance platforms that consume a large amount of energy. Since such systems may be subject to hardware failures, checkpointing is often used to assure the reliability of the application. Since checkpointing introduces additional computation time and energy consumption, we study how checkpoint intervals need to be selected so as to minimize a cost function that includes the execution time and the energy. Expressions for both the program’s energy consumption and execution time are derived as a function of the failure probability per instruction. A first principle based analysis yields the checkpoint interval that minimizes a linear combination of the average energy consumption and execution time of the program, in terms of the classical “Lambert function”. The sensitivity of the checkpoint to the importance attributed to energy consumption is also derived. The results are illustrated with numerical examples regarding programs of various lengths and showing the relation between the checkpoint interval that minimizes energy consumption and execution time, and the one that minimizes a weighted sum of the two. In addition, our results are applied to a popular software benchmark, and posted on a publicly accessible web site, together with the optimization software that we have developed.

Funder

H2020 LEIT Information and Communication Technologies

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SDK4ED: a platform for building energy efficient, dependable, and maintainable embedded software;Automated Software Engineering;2024-06-11

2. Deep-Sleep for Stateful IoT Edge Devices;Information;2022-03-17

3. SDK4ED: One-click platform for Energy-aware, Maintainable and Dependable Applications;2022 Design, Automation & Test in Europe Conference & Exhibition (DATE);2022-03-14

4. Review of Some Recent European Cybersecurity Research and Innovation Projects;Infocommunications journal;2022

5. Energy, QoS and Security Aware Edge Services;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3