On the Thermal Stresses Due to Weathering in Natural Stones

Author:

Ito William HidekiORCID,Scussiato TalitaORCID,Vagnon FedericoORCID,Ferrero Anna MariaORCID,Migliazza Maria RitaORCID,Ramis JacquelineORCID,de Queiroz Paulo Ivo BragaORCID

Abstract

Natural weathering is known as one of the key mechanisms causing degradation in building materials. Great efforts have been made to develop new materials and new processes for protecting those that already exist. Natural stones are an example of a natural material that has been extensively used for building construction since ancient times. In addition, they fit durability, aesthetic, and mechanical requirements. Thus, they still have great importance in the construction business nowadays. Though chemical interactions in natural stones, such as oxidation or hydrolyses, have been widely studied, in the last few decades, the physical weathering due to daily temperature variations has begun to be considered as a key mechanism of degradation and has been incorporated in international standards. This process is particularly important in calcitic marble slabs, where it can cause extensive damages to facades. Consequently, there are restrictive rules for the use of marble as an external coating material in many countries. In this paper, the thermal stresses induced by daily variations in temperature are calculated using geographic and meteorological information. The concept of sol-air temperature is used to estimate the temperatures of the hidden and exposed surfaces of a slab, and Fourier’s law and the theory of elasticity are used to calculate the temperature and stress distribution, respectively. The proposed methodology allows for a detailed reconstruction of the stress induced inside marble slabs using parameters commonly acquired in meteorological stations as input data. The developed methodology was validated by comparing in-situ measurements of the temperature of a building in Pescara (Central Italy). A good correlation between the theoretical and real temperatures was found; in particular, the peak tensile stresses inside the slabs were estimated at 75 kPa.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3