Synthesizing Individual Consumers′ Credit Historical Data Using Generative Adversarial Networks

Author:

Park NariORCID,Gu Yeong Hyeon,Yoo Seong Joon

Abstract

The financial sector accumulates a massive amount of consumer data that contain the most sensitive information daily. These data are strictly limited outside the financial institutions, sometimes even within the same organization, for various reasons such as privacy laws or asset management policy. Financial data has never been more valuable, especially when assessed jointly with data from different industries, including healthcare, insurance, credit bureau, and research institutions. Therefore, it is critical to generate synthetic datasets that retain the statistical or latent properties of the real datasets as well as the privacy protection guaranteed. In this paper, we apply Generative Adversarial Nets (GANs) to generating synthetic consumer credit data to be used for various educational purposes, specifically in developing machine learning models. GAN is preferable to other pseudonymization methods such as masking, swapping, shuffling, or perturbation, for it does not suffer from adding more attributes or data. This study is significant because it is the first attempt to generate the synthetic data of real-world credit data in practical use. The results find that synthetic consumer credit data using GAN shows a substantial utility without severely compromising privacy and would be a useful resource for big data training programs.

Funder

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. General Data Protection Regulation. cor. OJ L 127, 23.5.2018https://gdpr-info.eu/

2. Estimating the success of re-identifications in incomplete datasets using generative models

3. Multiple Imputation for Nonresponse in Surveys;Rubin,1987

4. Synthetic data generation with probabilistic Bayesian Networks

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of Synthetic Data Generation with VAE and CTGAN Models on Financial Credit Loan Offer Data;2023 8th International Conference on Computer Science and Engineering (UBMK);2023-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3