Multiaxial Fatigue Assessment for the Hanger Deck Connection of a High-Speed Steel-Truss-Arch Railway Bridge

Author:

Song Yongsheng,Ding Youliang,Jiang Fei,Wang Zhiwen,Lu Jun,Jia Huijuan

Abstract

Steel-truss-arch bridges have been applied in high-speed railway bridges due to their excellent dynamic and static structural performance. Under the action of high-speed trains, the steel connections between hangers and decks suffer from repeated stresses, inducing potential fatigue problems or even fatigue failure. In this study, a multiaxial fatigue evaluation method was first created and established based on critical damage-plane methodology, following which the fatigue evaluation procedure was also created and recommended. The methodology was applied to real-life strain data from a high-speed railway bridge from which an assessment of fatigue damage and predicted fatigue life was estimated. The connection between the shortest hanger and deck on the downstream side was selected as the target due to its relatively high stress. A multiscale finite-element model of this bridge was created according to the design profile and monitoring results of traffic flow, where the finite-element model was calibrated and validated by comparing the calculation results with the monitoring data. Influence analysis was then carried out to investigate two factors—i.e., the total traffic flow and compositions of freight trains—having effects on the fatigue life of the steel connection. The results indicate that the applied multiaxial fatigue method is suitable for online fatigue evaluation of actual bridges. In addition, by using the multiaxial fatigue method, the fatigue-damage accumulation rate can be nearly 60 times that obtained by the uniaxial fatigue method. If freighting is taken into consideration, the fatigue damage will increase rapidly, and for the case 10% of proportion traffic as freighting, the actual fatigue life is estimated to be shorter than the design life.

Funder

the Program of National Natural Science Foundation

Six talent peaks project in Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3