TQ-6, a Novel Ruthenium Derivative Compound, Possesses Potent Free Radical Scavenging Activity in Macrophages and Rats

Author:

Hung Kao-Wei,Chang Chao-Chien,Jayakumar Thanasekaran,Velusamy MarappanORCID,Hsia Chih-WeiORCID,Trang Nguyen Thi ThuORCID,Chou Duen-Suey,Hsieh Cheng-Ying,Hsia Chih-Hsuan

Abstract

Reactive oxygen species (ROS) play major role in inducing inflammation and related diseases. Our previous studies have revealed that the ruthenium (II)-compound, [Ru(η6-cymene)2-(1H-benzoimidazol-2-yl)-quinoline Cl]BF4 (TQ-6), inhibits hydroxyl radical (OH•) formation in human platelets. TQ-6 also have protective effect against induced inflammation in macrophages and hepatic injury in mice through NF-κB signaling. However, the free radical formation inhibitory mechanism of TQ-6 in macrophages is unclear. Therefore, this study detected the antioxidative ability of TQ-6 in both a cell-free system and in LPS-induced macrophages through electron spin resonance (ESR) spectrometry. TQ-6 reduced 1,1-diphenyl-2-picrylhydrazyl (DPPH), galvinoxyl, and superoxide radicals in a cell-free system and OH• formation in macrophages. Additionally, TQ-6 activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and upregulated the antioxidant protein heme oxygenase-1 (HO-1) to elevate anti-inflammatory activity in LPS-induced macrophage cells and inhibited carrageenan-induced paw edema in a rat model. Therefore, TQ-6 may prevent oxidative stress and also act as an effective therapeutic agent for the treatment of oxidant-related diseases.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3