A Study on the Effects of Lateral-Wedge Insoles on Plantar-Pressure Pattern for Medial Knee Osteoarthritis Using the Wearable Sensing Insole

Author:

Hsu Wei-ChingORCID,Chou Li-WeiORCID,Chiu Hsiao-Yen,Hsieh Chang-WeiORCID,Hu Wen-PinORCID

Abstract

Patients with knee osteoarthritis have a unique plantar-pressure pattern during walking, and lateral-wedge insoles are one of the treatment options. Participants were randomly assigned to either the lateral-wedge insole group or the ordinary insole group. The Visual Analog Scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and plantar-pressure test scores were evaluated at the baseline and at 20 weeks. Plantar pressure data were collected using a pressure insole with 89 sensing locations. In the ordinary insole group, the function and total WOMAC scores decreased significantly (function score, 24.8 (baseline) to 16.5 (week 20); total score, 34.9 (baseline) to 24.6 (week 20)). During walking, the transverse width of the center of pressure as a percentage of foot width (%Trans) significantly increased in the ordinary insole group (baseline, 6.3%; week 20, 14.8%). In addition, the values of partial foot pressure as a percentage of body weight (%PFP) on the forefoot (baseline, 30.3%; week 20, 39.2%) and heel (baseline, 28.1%; week 20, 16.9%) also increased significantly in the ordinary insole group. Significant group-by-time interaction effects were observed for partial foot pressure per body weight in the forefoot (p = 0.031) and heel (p = 0.024). In the ordinary insole group, the plantar pressure on the heel significantly decreased (p = 0.011) and that on the forefoot significantly increased (p = 0.023). In contrast, plantar pressure remained stable in all regions in the lateral-wedge insole group. Thus, lateral-wedge insoles may protect against plantar pressure deterioration in patients with knee osteoarthritis.

Funder

Asia University Hospital

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3