Landslide Susceptibility Mapping by Fusing Convolutional Neural Networks and Vision Transformer

Author:

Bao Shuai,Liu Jiping,Wang Liang,Konečný MilanORCID,Che Xianghong,Xu ShenghuaORCID,Li Pengpeng

Abstract

Landslide susceptibility mapping (LSM) is an important decision basis for regional landslide hazard risk management, territorial spatial planning and landslide decision making. The current convolutional neural network (CNN)-based landslide susceptibility mapping models do not adequately take into account the spatial nature of texture features, and vision transformer (ViT)-based LSM models have high requirements for the amount of training data. In this study, we overcome the shortcomings of CNN and ViT by fusing these two deep learning models (bottleneck transformer network (BoTNet) and convolutional vision transformer network (ConViT)), and the fused model was used to predict the probability of landslide occurrence. First, we integrated historical landslide data and landslide evaluation factors and analysed whether there was covariance in the landslide evaluation factors. Then, the testing accuracy and generalisation ability of the CNN, ViT, BoTNet and ConViT models were compared and analysed. Finally, four landslide susceptibility mapping models were used to predict the probability of landslide occurrence in Pingwu County, Sichuan Province, China. Among them, BoTNet and ConViT had the highest accuracy, both at 87.78%, an improvement of 1.11% compared to a single model, while ConViT had the highest F1-socre at 87.64%, an improvement of 1.28% compared to a single model. The results indicate that the fusion model of CNN and ViT has better LSM performance than the single model. Meanwhile, the evaluation results of this study can be used as one of the basic tools for landslide hazard risk quantification and disaster prevention in Pingwu County.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3