Structural and Optical Characterization of Mechanochemically Synthesized CuSbS2 Compounds

Author:

Esperto Luís,Figueira Isabel,Mascarenhas João,Silva Teresa P.ORCID,Correia José B.ORCID,Neves FilipeORCID

Abstract

One of the areas of research on materials for thin-film solar cells focuses on replacing In and Ga with more earth-abundant elements. In that respect, chalcostibite (CuSbS2) is being considered as a promising environmentally friendly and cost-effective photovoltaic absorber material. In the present work, single CuSbS2 phase was synthesized directly by a short-duration (2 h) mechanochemical-synthesis step starting from mixtures of elemental powders. X-ray diffraction analysis of the synthesized CuSbS2 powders revealed a good agreement with the orthorhombic chalcostibite phase, space group Pnma, and a crystallite size of 26 nm. Particle-size characterization revealed a multimodal distribution with a median diameter ranging from of 2.93 μm to 3.10 μm. The thermal stability of the synthesized CuSbS2 powders was evaluated by thermogravimetry and differential thermal analysis. No phase change was observed by heat-treating the mechanochemically synthesized powders at 350 °C for 24 h. By UV-VIS-NIR spectroscopy the optical band gap was determined to be 1.41 eV, suggesting that the mechanochemically synthesized CuSbS2 can be considered suitable to be used as absorber materials. Overall, the results show that the mechanochemical process is a viable route for the synthesis of materials for photovoltaic applications.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. Emerging Thin Film Solar Panels

2. Pathways for solar photovoltaics

3. Photovoltaics Technology Development Report 2020;Taylor,2020

4. Photovoltaics Report,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3