Optimizing Evanescent Efficiency of Chalcogenide Tapered Fiber

Author:

Zhao XudongORCID,Yao Ni,Zhang XianghuaORCID,Zhang Lei,Tao Guangming,Li Zijian,Liu Quan,Zhao Xiujian,Xu Yinsheng

Abstract

Evanescent wave absorption-based mid-infrared chalcogenide fiber sensors have prominent advantages in multicomponent liquid and gas detection. In this work, a new approach of tapered-fiber geometry optimization was proposed, and the evanescent efficiency was also theoretically calculated to evaluate sensing performance. The influence of fiber geometry (waist radius (Rw), taper length (Lt), waist deformation) on the mode distribution, light transmittance (T), evanescent proportion (TO) and evanescent efficiency (τ) is discussed. Remarkably, the calculated results show that the evanescent efficiency can be over 10% via optimizing the waist radius and taper length. Generally, a better sensing performance based on tapered fiber can be achieved if the proportion of the LP11-like mode becomes higher or Rw becomes smaller. Furthermore, the radius of the waist boundary (RL) was introduced to analyze the waist deformation. Mode proportion is almost unchanged as the RL increases, while τ is halved. In addition, the larger the micro taper is, the easier the taper process is. Herein, a longer waist can be obtained, resulting in larger sensing area which increases sensitivity greatly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3