Investigating Biochar-Derived Dissolved Organic Carbon (DOC) Components Extracted Using a Sequential Extraction Protocol

Author:

Liu Hui,Zhao Baowei,Zhang Xin,Li Liujun,Zhao Yue,Li Yingquan,Duan Kaixiang

Abstract

Biochar-derived dissolved organic carbon (DOC), as the most important component of biochar, can be released on farmland, improving fertility and playing a role in soil amendment and remediation. The complexity of molecular structures and diversity of DOC compounds have influenced these functions to some extent. A sequential extract protocol consisting of water (25 °C), hot water (80 °C), and NaOH solution (0.05 M) was used to fully extract DOC compounds and gain a thorough understanding of the possible DOC components released from biochar. Rape straw (RS), apple tree branches (ATB), and pine sawdust (PS) were pyrolyzed at 300, 500, and 700 °C, respectively, to make nine distinct biochars. A TOC analyser, ultraviolet-visible spectroscopy (UV–vis), and excitation–emission fluorescence (EEM) spectrophotometer were used in conjunction with parallel factor analysis (PARAFAC) to determine the distribution of DOC content, the diversity of aromaticity, molecular weight characteristics and components of biochar-derived DOC. The results show that the relative distribution of water-extractable fractions ranged from 3.21 to 35.57%, with a low-aromaticity and extremely hydrophilic fulvic-acid-like compounds being found in the highest amounts (C2 and C3). The smallest amount of hot water-extractable components was produced from the release of small-molecule aliphatic compounds adsorbed on biochar and susceptible to migration loss once in a soil solution. More than half of the biochar-derived DOC was released in a NaOH solution, which primarily consisted of humic-acid-like compounds (C1), with higher molecular weights, more aromaticity, and lower bioavailability, according to the distribution of DOC in various extractants. In addition, the pyrolysis temperature and biomass type had a significant impact on the DOC properties released by biochar. As a result, the findings of this study showed that using a sequential extract protocol of water, hot water, and NaOH solution in combination with spectroscopic methods could successfully reveal the diversity of biochar-derived components, which could lead to new insights for the accurate assessment of potential environmental impacts and new directions for biochar applications.

Funder

THE NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3