Application of Artificial Intelligence to Evaluate the Fresh Properties of Self-Consolidating Concrete

Author:

Feng Yuping,Mohammadi MasoudORCID,Wang Lifeng,Rashidi Maria,Mehrabi PeymanORCID

Abstract

This paper numerically investigates the required superplasticizer (SP) demand for self-consolidating concrete (SCC) as a valuable information source to obtain a durable SCC. In this regard, an adaptive neuro-fuzzy inference system (ANFIS) is integrated with three metaheuristic algorithms to evaluate a dataset from non-destructive tests. Hence, five different non-destructive testing methods, including J-ring test, V-funnel test, U-box test, 3 min slump value and 50 min slump (T50) value were performed. Then, three metaheuristic algorithms, namely particle swarm optimization (PSO), ant colony optimization (ACO) and differential evolution optimization (DEO), were considered to predict the SP demand of SCC mixtures. To compare the optimization algorithms, ANFIS parameters were kept constant (clusters = 10, train samples = 70% and test samples = 30%). The metaheuristic parameters were adjusted, and each algorithm was tuned to attain the best performance. In general, it was found that the ANFIS method is a good base to be combined with other optimization algorithms. The results indicated that hybrid algorithms (ANFIS-PSO, ANFIS-DEO and ANFIS-ACO) can be used as reliable prediction methods and considered as an alternative for experimental techniques. In order to perform a reliable analogy of the developed algorithms, three evaluation criteria were employed, including root mean square error (RMSE), Pearson correlation coefficient (r) and determination regression coefficient (R2). As a result, the ANFIS-PSO algorithm represented the most accurate prediction of SP demand with RMSE = 0.0633, r = 0.9387 and R2 = 0.9871 in the testing phase.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3