Abstract
This paper presents numerical failure analysis on cracking of shield machine cutterhead structure during a metro-tunnel construction. The stress intensity factors (SIFs) of surface cracks with different shapes and location angles were analyzed by a finite element simulation method based on linear elastic fracture mechanics (LEFM) theory. The ratios of variation in stress intensity factors of cracks with different shapes were analyzed. The maximum allowable crack depth of the cutterhead panel is 50.23 mm by dynamic stress calculation, and the damage tolerance criterion of the cutterhead panel was proposed. The influence of the Paris model parameter values was analyzed based on mathematical methods. It is proven that the location of the cutterhead cracking angle is mainly determined by the mixed-mode SIF. In practice, the crack section basically expanded into the semi-elliptical shape. The cutterhead structure may directly enter the stage of crack propagation due to welding defects during tunneling. The research results provide a theoretical basis and important reference for crack detection in the key parts of the cutterhead, as well as maintenance cycle determination and life prediction of the cutterhead mileage, both of which have important engineering value.
Funder
the Major National Research & Development project of china
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献