Design of V-Substituted TiFe-Based Alloy for Target Pressure Range and Easy Activation

Author:

Faisal Mohammad,Kim June-HyungORCID,Cho Young Whan,Jang Jae-il,Suh Jin-YooORCID,Shim Jae-Hyeok,Lee Young-SuORCID

Abstract

Titanium iron (TiFe) alloy is a room-temperature hydrogen-storage material, and it absorbs hydrogen via a two-step process to form TiFeH and then TiFeH2. The effect of V addition in TiFe alloy was recently elucidated. The V substitution for Ti sublattice lowers P2/P1 ratio, where P1 and P2 are the equilibrium plateau pressure for TiFe/TiFeH and TiFeH/TiFeH2, respectively, and thus restricts the two-step hydrogenation within a narrow pressure range. The focus of the present investigation was to optimize the V content such that maximum usable storage capacity can be achieved for the target pressure range: 1 MPa for absorption and 0.1 MPa for desorption. The effect of V substitution at selective Ti or Fe sublattices was closely analyzed, and the alloy composition Ti46Fe47.5V6.5 displayed the best performance with ca. 1.5 wt.% of usable capacity within the target pressure range. At the same time, another issue in TiFe-based alloys, which is a difficulty in activation at room temperature, was solved by Ce addition. It was shown that 3 wt.% Ce dispersion in TiFe alloy imparted to it easy room-temperature (RT) activation properties.

Funder

Korea Institute of Science and Technology

“Technology Development Program to Solve Climate Changes” of the National Research Foundation funded by the Ministry of Science and ICT of Korea

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3