A Compact Multifrequency Measurement System Based on an Integrated Frequency-Scanning Generator

Author:

Shi Nuannuan,Hao Tengfei,Li Wei,Li Ming

Abstract

A compact multifrequency measurement system based on frequency-to-time mapping technology is proposed and experimentally demonstrated using an integrated frequency scanning signal generator. The relationship between the input microwave frequency and the time difference of a pair of pulses is established to realize the frequency information mapping to the time information. As a main part in the proposed frequency measurement system, the frequency-scanning signal is generated by heterodyning of two lasers with the monolithic integrated laser array, of which one is modulated on a saw-tooth signal. In the proposed frequency measurement system, it can measure single/multiple frequency microwave signals with a large bandwidth for high resolution and flexible tunable measurement range for multifrequency band. In the experimental demonstration, the single frequency measurement errors are less than 90 MHz within the measurement range from 4 to 12 GHz. For two-tone signal, the measurement resolution reaches about 150 MHz.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3