Design and Application of a Smart Lighting System Based on Distributed Wireless Sensor Networks

Author:

Cheng Yusi,Fang Chen,Yuan Jingfeng,Zhu LeiORCID

Abstract

Buildings have been an important energy consuming sector, and inefficient controlling of lights can result in wastage of energy in buildings. The aim of the study is to reduce energy consumption by implementing a smart lighting system that integrates sensor technologies, a distributed wireless sensor network (WSN) using ZigBee protocol, and illumination control rules. A sensing module consists of occupancy sensors, including passive infrared (PIR) sensors and microwave Doppler sensors, an ambient light sensor, and lighting control rules. The dimming level of each luminaire is controlled by rules taking into consideration occupancy and daylight harvesting. The performance of the proposed system is evaluated in two scenarios, a metro station and an office room, and the average energy savings are about 45% and 36%, respectively. The effects of different factors on energy savings are analyzed, including people flow density, weather, desired illuminance, and the number of people in a room. Experimental results demonstrate the robustness of the proposed system and its ability to save energy consumption. The study can benefit the development of intelligent and sustainable buildings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3