Optimization of the Housing Shape Design for Radiated Noise Reduction of an Agricultural Electric Vehicle Gearbox

Author:

Son Gwan-Hee,Kim Beom-Soo,Cho Seung-Je,Park Young-JunORCID

Abstract

As the demand for agricultural electric vehicles increases, it is becoming important to conduct noise reduction in consideration of the characteristics of an electric powertrain. This study was conducted to optimize the shape design of gearbox housing for radiated noise reduction of an agricultural electric vehicle gearbox. The noise and vibration of the gearbox were measured considering the noise characteristics of the electric vehicle gearbox, which radiates high-frequency pure tone noise. The main noise source radiated by the structural vibration of the gearbox housing was identified and considered when modeling the loading conditions in the numerical analysis. To improve the reliability, the finite element (FE) model was updated and validated. Internal machine elements were modeled as a substructure through a reduced-order modeling method to reduce the computing time and apply a constant gear excitation force. The weak areas of structure were determined and it was used as the design area for optimization. The topology optimization technique was used to reduce the equivalent radiated power (ERP) which was used as an indicator of radiated noise level. The maximum value of the ERP decreased under all operating conditions at the rated speed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference18 articles.

1. An investigation into the feasibility of hybrid and all-electric agricultural machines;McFadzean;Sci. Pap. Ser. A Agron.,2017

2. Electrical Motor Drivelines in Commercial All-Electric Vehicles: A Review

3. Sound Character of Electric Vehicles;Govindswamy,2011

4. Annoyance and Loudness of Pure Tones in Noise: Application to Active Control of Fan Noise;Meunier,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3