Selection Methodology of an Electric Actuator for Nose Landing Gear of a Light Weight Aircraft

Author:

Shams Taimur AliORCID,Shah Syed Irtiza Ali,Ahmad Muhammad Ayaz,Mehmood Kashif,Ahmad WaseemORCID,Rizvi Syed Tauqeer ul Islam

Abstract

Landing gear system of an aircraft enables it to take off and land with safety and comfort. Because of the horizontal and vertical velocity of aircraft, upon landing, the complete aircraft undergoes different forcing functions in the form of the impact force that is absorbed by landing gears, shock absorbers, and actuators. In this research, a selection methodology has been proposed for an electrical actuator to be installed in the retraction mechanism of nose landing gear of an aircraft having 1600 kg gross takeoff weight. Nose landing gear and its associated components, like strut and shock absorbers, were modeled in CAD software. Analytical expressions were then developed in order to calculate the actuator stroke, translational velocity, force, and power for complete cycle of retraction, and some were subsequently compared with the computational results that were obtained using MSC ADAMS®. Air in the oleo-pneumatic shock absorber of nose landing gear was modeled as a nonlinear spring with equivalent spring constant, whereas hydraulic oil was modeled as a nonlinear damper with equivalent damping constant. The nose landing gear system was modeled as a mass-spring-damper system for which a solution for sinusoidal forcing functions is proposed. Finally, an electrical actuator has been selected, which can retract and extend nose landing gear, meeting all of the constraints of aircraft, like fuselage space, aircraft ground clearance, locking loads, power consumption, retraction and extension time, and dynamic response of aircraft. It was found that the selection of an electrical actuator is based upon the quantification of forces transmitted to electrical actuator during one point load at gross takeoff weight. The ability of retraction and extension time, as dictated by Federal Aviation Regulation, has also been given due consideration in the proposed methodology as significant criteria. The proposed system is now in the process of ground testing, followed by flight testing in the near future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Failure analysis of a broken support strut of an aircraft landing gear

2. Aircraft Landing Gear Design & Development—How Advanced Technologies Are Helping to Meet the Challenges;Divakaran,2015

3. Airframe Structural Design-Practical Design Information and Data on Aircraft Structures;Chun-Yung,1999

4. Review on signal-by-wire and power-by-wire actuation for more electric aircraft;Jean-Charles;Chin. J. Aeronaut.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3