The Capacitated Location-Allocation Problem Using the VAOMP (Vector Assignment Ordered Median Problem) Unified Approach in GIS (Geospatial Information Systam)

Author:

Vafaeinejad AlirezaORCID,Bolouri Samira,Alesheikh Ali AsgharORCID,Panahi Mahdi,Lee Chang-WookORCID

Abstract

The Vector Assignment Ordered Median Problem (VAOMP) is a new unified approach for location-allocation problems, which are one of the most important forms of applied analysis in GIS (Geospatial Information System). Solving location-allocation problems with exact methods is difficult and time-consuming, especially when the number of objectives and criteria increases. One of the most important criteria in location-allocation problems is the capacity of facilities. Firstly, this study develops a new VAOMP approach by including capacity as a criterion, resulting in a new model known as VAOCMP (Vector Assignment Ordered Capacitated Median Problem). Then secondly, the results of applying VAOMP, in scenario 1, and VAOCMP, in scenario 2, for the location-allocation of fire stations in Tehran, with the objective of minimizing the arrival time of fire engines to an incident site to no more than 5 min, are examined using both the Tabu Search and Simulated Annealing algorithms in GIS. The results of scenario 1 show that 52,840 demands were unable to be served with 10 existing stations. In scenario 2, given that each facility could not accept demand above its capacity, the number of demands without service increased to 59,080, revealing that the number of stations in the study area is insufficient. Adding 35 candidate stations and performing relocation-reallocation revealed that at least three other stations are needed for optimal service. Thirdly, and finally, the VAOMP and VAOCMP were implemented in a modest size problem. The implementation results for both algorithms showed that the Tabu Search algorithm performed more effectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3