Improved Performance in the Detection of ACO-OFDM Modulated Signals Using Deep Learning Modules

Author:

Darwesh LaialyORCID,Kopeika NatanORCID

Abstract

Free space optical communication (FSO) is widely deployed to transmit high data rates for rapid communication traffic increase. Asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) modulation is a very efficient FSO communication technique in terms of transmitted optical power. However, its performance is limited by atmospheric turbulence. When the channel includes strong turbulence or is non-deterministic, the bit error rate (BER) increases. To reach optimal performance, the ACO-OFDM decoder needs to know accurate channel state information (CSI). We propose novel detection using different deep learning (DL) algorithms. Our DL models are compared with minimum mean square error (MMSE) detection methods in different turbulent channels and improve performance especially for non-stationary and non-deterministic channels. Our models yield performance very close to that of the MMSE estimator when the channel is characterized by weak or strong turbulence and is stationary. However, when the channel is non-stationary and variable, our DL model succeeds in improving the performance of the system and decreasing the signal to noise ratio (SNR) by more than 8 dB compared to that of the MMSE estimator, and it succeeds in recovering the received data without needing to know accurate CSI. Our DL decoders also show notable speed and energy efficiency improvement.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Free Space Optical Communication;Kaushal,2017

2. Applied Aspects of Optical Communication and LIDAR;Blaunstein,2009

3. Worldwide and Regional Internet of Things (Iot) 2014–2020 Forecast: A Virtuous Circle of Proven Value and Demand;Denise Lund,2014

4. Internet of Things Architecture: Recent Advances, Taxonomy, Requirements, and Open Challenges

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3