Comprehensive Model for Evaluating the Performance of Mach-Zehnder-Based Silicon Photonic Switch Fabrics in Large Scale

Author:

Kouissi Marouan,Charbonnier Benoit,Algani Catherine

Abstract

Building a large-scale Mach-Zehnder-based silicon photonic switch circuit (LS-MZS) requires an appropriate choice of architecture. In this work, we propose, for the first time to our knowledge, a single metric that can be used to compare different topologies. We propose an accurate analytical model of the signal-to-crosstalk ratio (SCR) that highlights the performance limitations of the main building blocks: Mach-Zehnder interferometers (MZI) and waveguide crossings. It is based on the cumulative crosstalk and total insertion loss of the LS-MZS. Four different architectures: Beneš, dilated Beneš, switch and select, double-layer network were studied for the reason that they are mainly referenced in the literature. We compared them using our developed SCR indicator. With reference to the state-of-the-art technology, the analysis of the four architectures using SCR showed that, on a large scale, a high number of waveguide crossings significantly affects the performance of the switch matrix. Moreover, better performance was reached using the double-layer-network architecture. Then, we presented a 2 × 2 MZI using two electro-optic phase shifters and a waveguide crossing realized in LETI’s silicon photonics technology. Measured performances were quite good: the switch circuit had a crosstalk of −31.3 dB and an insertion loss estimated to be less than 1.31 dB.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3