An Improved Biocompatible Probe for Photoacoustic Tumor Imaging Based on the Conjugation of Melanin to Bovine Serum Albumin

Author:

Capozza MartinaORCID,Stefania Rachele,Rosas Luisa,Arena Francesca,Consolino Lorena,Anemone AnnasofiaORCID,Cimino James,Longo Dario Livio,Aime Silvio

Abstract

A novel, highly biocompatible, well soluble melanin-based probe obtained from the conjugation of melanin macromolecule to bovine serum albumin (BSA) was tested as a contrast agent for photoacoustic tumor imaging. Five soluble conjugates (PheoBSA A-E) were synthesized by oxidation of dopamine (DA) in the presence of variable amounts of BSA. All systems showed the similar size and absorbance spectra, being PheoBSA D (DA:BSA ratio 1:2) the one showing the highest photoacoustic efficiency. This system was then selected for the investigations as it showed a marked enhancement of the photoacoustic (PA) contrast in the tumor region upon iv injection. Biodistribution studies confirmed the accumulation of PheoBSA D within the tumor region and showed fast renal elimination, lack of cell toxicity, and good hemocompatibility. A higher PA contrast enhancement was observed in the case of PC3 prostate tumor xenograft when compared to the TS/A breast one, likely reflecting different vascularization/extravasation properties between the two tumor murine models. The improved PA properties shown by PheoBSA D allowed to set up a 3D dynamic contrast-enhanced (DCE) approach that demonstrated a persistent increase of the PA signal in the tumor region for a long period. Overall, the herein reported results demonstrate that PheoBSA D is a promising blood pool contrast agent for in vivo PA imaging, particularly useful for the set-up of 3D DCE-PA approaches to monitor tumor vascular properties.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3