Abstract
The emergence of COVID-19 and the pandemic have changed and devastated every aspect of our lives. Before effective vaccines are widely used, it is important to predict the epidemic patterns of COVID-19. As SARS-CoV-2 is transferred primarily by droplets of infected people, the incorporation of human mobility is crucial in epidemic dynamics models. This study expands the susceptible–exposed–infected–recovered compartment model by considering human mobility among a number of regions. Although the expanded meta-population epidemic model exhibits better performance than general compartment models, it requires a more accurate estimation of the extended modeling parameters. To estimate the parameters of these epidemic models, the meta-population model is incorporated with deep learning models. The combined deep learning model generates more accurate modeling parameters, which are used for epidemic meta-population modeling. In order to demonstrate the effectiveness of the proposed hybrid deep learning framework, COVID-19 data in South Korea were tested, and the forecast of the epidemic patterns was compared with other estimation methods.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献